Sains
Malaysiana 54(4)(2025): 993-1003
http://doi.org/10.17576/jsm-2025-5404-03
Steviol Glycoside Production and Growth in Stevia
rebaudiana Shoot Culture after Methyl Jasmonate Elicitation
(Penghasilan Steviol Glikosida dan Pertumbuhan
Kultur Pucuk Stevia rebaudiana selepas Elisitasi Metil Jasmonat)
ANDIRA RAHMAWATI1,2, IRIAWATI2,
RIZKITA RACHMI ESYANTI2,* & ROOHAIDA
OTHMAN3
1Doctoral Programme, School
of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10,
40132 Bandung, Indonesia
2School
of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10,
40132 Bandung, Indonesia
3Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan:
24 Mei 2024/ Diterima:
23 Disember 2024
Abstract
Steviol
glycosides are a group of compounds derived from the Stevia rebaudiana metabolites
which are commonly used as sugar replacements. Methyl jasmonate (MeJA) elicitation
is one strategy to induce high steviol glycoside content. MeJA can enhance the synthesis
of secondary metabolites, however, it can also negatively impact the growth of Stevia.
The objective of this study was to establish the concentration and exposure
duration of MeJA elicitation to obtain the highest level of steviol glycoside production
while achieving the best growth for Stevia shoot cultures. The shoot
cultures were elicited using MeJA at concentrations of 10 μM, 50 μM,
and 100 μM for 24, 48, and 72 h. The cultures were then transferred into
the medium without MeJA for 7 days, and then growth characteristics were
measured. Analysis of stevioside and rebaudioside A levels was performed using
HPLC from samples harvested directly after treatment and 7 days post-elicitation.
MeJA was found to suppress growth in terms of height, adventitious shoot
formation, and leaf size across all concentrations. However, the number of
leaves, fresh weight, number of axillary buds, and number of nodes showed no
significant difference. The optimal condition for stevioside synthesis was
achieved at 50 μM MeJA for 48 h (0.73 mg/g), while the optimal condition
for rebaudioside A synthesis was achieved with 100 μM MeJA 24 h treatment
(0.63 mg/g). Analysis of the plant growth and secondary metabolite production
suggested that the treatment using 50 μM MeJA for 48 h was found to be the
best conditions which gave high secondary metabolite production while plant
growth was also high. This finding can serve as a fundamental approach for
enhancing the production of steviol glycosides in the industry.
Keywords: Growth; in
vitro culture; rebaudioside A; Stevia; stevioside
Abstrak
Steviol glikosida adalah sekumpulan sebatian terbitan daripada
metabolit Stevia rebaudiana yang biasa digunakan sebagai pengganti gula.
Elisitasi menggunakan metil jasmonat (MeJA) merupakan satu strategi yang boleh
dilakukan untuk mengaruh kandungan steviol glikosida yang tinggi. MeJA boleh
meningkatkan sintesis metabolit sekunder, namun begitu, ia juga boleh
menjejaskan pertumbuhan Stevia. Objektif kajian ini adalah untuk
menentukan kepekatan dan tempoh pendedahan elisitasi MeJA untuk memperoleh
tahap penghasilan steviol glikosida paling tinggi di samping mencapai
pertumbuhan terbaik bagi kultur pucuk Stevia. Kultur pucuk telah dielisitasi
menggunakan MeJA pada kepekatan 10 μM, 50 μM dan 100 μM selama
24, 48 dan 72 jam. Kultur kemudiannya dipindahkan ke dalam medium tanpa MeJA selama
7 hari, seterusnya ciri pertumbuhan telah diukur. Analisis tahap steviosida dan
rebaudiosida A dilakukan menggunakan HPLC daripada sampel yang diambil sejurus
selepas rawatan MeJA dan 7 hari selepas elisitasi. MeJA didapati merencat
pertumbuhan dari segi ketinggian, pembentukan pucuk adventitius dan saiz daun
pada semua kepekatan. Walau bagaimanapun, bilangan daun, berat segar, bilangan tunas
aksilari dan bilangan nod tidak menunjukkan perbezaan signifikan. Keadaan yang optimum
bagi sintesis steviosida dicapai pada 50 μM MeJA selama 48 jam (0.73 mg/g),
manakala keadaan yang optimum bagi sintesis rebaudiosida A pula dicapai dengan
rawatan 100 μM MeJA selama 24 jam (0.63 mg/g). Analisis pertumbuhan
tumbuhan dan penghasilan metabolit sekunder mencadangkan bahawa rawatan menggunakan
50 μM MeJA selama 48 jam didapati merupakan keadaan terbaik yang
memberikan penghasilan metabolit sekunder yang tinggi di samping pertumbuhan tumbuhan
yang juga tinggi. Penemuan ini boleh bertindak sebagai pendekatan asas dalam meningkatkan
penghasilan steviol glikosida dalam industri.
Kata
kunci: Kultur in vitro; pertumbuhan; rebaudiosida A; Stevia; steviosida
RUJUKAN
Ahn, S.Y., Kim, S.A., Cho, K.S. & Yun, H.K.
2014. Expression of genes related to flavonoid and stilbene synthesis as
affected by signaling chemicals and Botrytis cinerea in grapevines. Biologia
Plantarum 58: 758-767.
Ahmad,
J., Khan, I., Blundell, R., Azzopardi, J. & Fawzi, M. 2020. Stevia
rebaudiana Bertoni, an updated review of its health benefit, industrial
applications, and safety. Trends in Food Science and Technology 100: 177-189.
Bayraktar,
M., Naziri, E., Karabey, F., Akgun, I.H., Bedir, E., Rock-Okuyucu, B. & Gurel,
A. 2018. Enhancement of stevioside production by using biotechnological
approach in in vitro culture of Stevia rebaudiana. International
Journal of Secondary Metabolite 5(4): 362-374.
Bayraktar,
M., Naziri, E., Akgun, I.H., Karabey, F., Ilhan, E., Akyol, B., Bedir, E. &
Gurel, A. 2016. Elicitor induced stevioside production, in vitro shoot
growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant
Cell, Tissue, and Organ Culture 127(2): 289-300.
Chen,
J., Wang, J., Wang, R., Xian, B., Ren, C., Liu, Q., Wu, Q. & Pei, J. 2020.
Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in
safflower (Carthamus tinctorius L.) under MeJA treatment. BMC Plant
Biology 20: 353.
Cheng,
Y., Liang, C., Qiu, Z., Zhou, S., Liu, J., Yang, Y., Wang, R., Yin, J., Ma, C.,
Cui, Z., Song, J. & Li, D. 2023. Jasmonic acid negatively regulates branch
growth in pear. Frontiers in Plant Science 14: 1105521.
Cousins, M.M. & Adelberg, J.W. 2008.
Short-term and long-term time course studies of turmeric (Curcuma longa L.) microrhizome development in vitro. Plant Cell, Tisssue, and Organ
Culture 93: 283-293.
Faizal,
A., Esyanti, R.R., Adnain, N., Rahmani, S., Prihatini, A.W., Azar, Iriawati
& Turjaman, M. 2021. Methyl jasmonate and crude extracts of Fusarium
solani elicit agarwood compounds in shoot culture of Aquilaria
malaccensis Lamk. Heliyon 7(4): e06725.
Faizal,
A. & Sari, A.V. 2019. Enhancement of Saponin accumulation in adventitious
root culture of Javanese Ginseng (Talinum paniculatum Gaertn.) through
methyl jasmonate and salicylic acid elicitation. African Journal of Biotechnology 18(6): 130-135.
Jan,
S.A., Habib, N., Shinwari, Z.K., Ali, M. & Ali, N. 2021. The anti-diabetic
activities of natural sweetener plant Stevia: An updated review. SN
Applied Sciences 3: 517.
Kaminska,
M. 2021. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell, Tissue, and Organ Culture 146: 425-447.
Kazan, K.
& Manners, J.M. 2012. JAZ repressors and the orchestration of phytohormone
crosstalk. Trends in Plant Science 17: 22-31.
Khalil, S.A., Zamir, R. & Ahmad, N. 2014.
Selection of suitable propagation method for consistene plantlets production in Stevia rebaudiana (Bertoni). Saudi Journal of Biological Science 21:
566-573.
Kim, J.,
Chang, C. & Tucker, M.L. 2015. To grow old: Regulatory role of ethylene and
jasmonate acid in senescence. Frontiers in Plant Science 6: 20.
Koc, İ., Onay, A. & Çiftçi, Y.Ö. 2014. In vitro regeneration and conservation of the lentisk (Pistacia
lentiscus L.). Turkish Journal of Biology 38: 5.
Kolb,
N., Herrera, J., Ferreyra, D. & Uliana, R. 2001. Analysis of sweet
diterpene glycosides from Stevia rebaudiana: Improved HPLC method. Journal
of Agricultural and Food Chemistry 49(10): 4538-4541.
Li, C.,
Wang, P., Menzies, N.W., Lombi, E. & Kopittke, P.M. 2016. Effects of methyl
jasmonate on plant growth and leaf properties. Journal of Plant Nutrition
and Soil Sciences 181(3): 409-418.
Liu,
J.P., Hu, J., Liu, Y.H., Yang, C.P., Zhuang, Y.F., Guo, X.L., Li, Y.J. &
Zhang, L. 2018. Transcriptome analysis of Hevea brasiliensis in response
to exogenous methyl jasmonate provides novel insights into regulation of
jasmonate-elicited rubber biosynthesis. Physiology and Molecular Biology of
Plants 24: 349-358.
Lucho, S.R.,
Amaral, M.N., Milech, C., Ferrer, M.A. Calderon, A.A., Bianchi, V.J. & Braga,
E.J.B. 2018. Elicitor-induced transcriptional changes of genes of the steviol
glycoside biosynthesis pathway in Stevia rebaudiana Bertoni. Journal
of Plant Growth Regulation 37: 971-985.
Mahmood,
M., Bidabadi, S.S., Ghobadi, C. & Gray, D.J. 2012. Effect of methyl
jasmonate treatments on alleviation of polyethylene glycol -mediated water
stress in banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tip
cultures. Plant Growth Regulation 68: 161-169.
Mariotti,
L., Fambrini, M., Pugliesi, C. & Scartazza, A. 2022. The
gibberellin-deficient dwarf2 mutant of sunflower shows a high
constitutive level of jasmonic and salicylic acids and an elevated energy
dissipation capacity in well-watered and drought conditions. Environmental
and Experimental Botany 194: 104697.
Moharramnejad,
S., Azam, A.T., Panahandeh, J., Dehghanian, Z. & Ashraf, M. 2019. Effect of
methyl jasmonate and salicylic acid on in vitro growth, stevioside
production, and oxidative defense system in Stevia rebaudiana. Sugar
Technology 21: 1031-1038.
Momtazi-Borojeni,
A.A., Esmaeili, S.A., Abdollahi, E. & Sahebkar, A. 2017. A review on the
pharmacology and toxicology of steviol glycosides extracted from Stevia
rebaudiana. Current Pharmaceutical Design 23(11): 1616-1622.
Murashige,
T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with
tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
Noir,
S., Bomer, M., Takahashi, N., Ishida, T., Tsui, T.L., Balbi, V., Shanahan, H.,
Sugimoto, K. & Devoto, A. 2013. Jasmonate controls leaf growth by
repressing cell proliferation and the onset of endoreduplication while
maintaining a potential stand-by mode. Physiologia Plantarum 161: 1930-1951.
Pandey, M. & Chikara, K. 2014. In vitro regeneration and effect of abiotic stress on physiology and biochemical content
of Stevia rebaudiana Bertoni. Journal of Plant Science & Research 1(3): 113.
Pauwels, L., Morreel, K., Witte, E.D.,
Lammertyn, F., Von Montagu, M., Boerjan, W., Inzé, D. & Goossens, A. 2008.
Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism
and cell cycle progression in cultured Arabidopsis cells. Proceedings of the
National Academy of Sciences of the United States of America 105(4): 1380-1385.
Rahmawati,
A., Emmanuel, V., Iriawati, Lambangsari, K., Esyanti, R.R., Othman, R.,
Simamora, A.N.D. & Suwito, B. 2023. Evaluation of Stevia rebaudiana leaf axillary shoot formation, cultured in MS medium supplemented with IAA-BAP
and MS supplemented with kinetin. 3 Bio Journal of Biological Science, Technology,
and Management 5(1): 128-132.
Rameshsing,
C.N., Hegde, S.N. & Vasundhara, M. 2015. Enhancement of steviol glycosides
in stevia (Stevia rebaudiana Bertoni) through induction of polyploidy. Current
Trends in Biotechnology and Pharmacy 9: 141-146.
Rohmawati,
T. & Dewi, K. 2019. Effect of methyl jasmonate on vegetative growth and
formation of potato tuber (Solanum tuberosum L. var. Granola). Biogenesis 7(1): 24-29.
Ruiz-Ruiz,
J.C., Moguel-Ordoñez, Y.B., Matus-Basto, A.J. & Segura-Campos, M.R. 2015. Antidiabetic
and antioxidant activity of Stevia rebaudiana extracts (var. Morita) and
their incorporation into a potential functional bread. Journal of Food
Science and Technology 52(12): 7894-7903.
Sharma, M., Ahuja, A.,
Gupta, R. & Mallubhotla, S. 2015. Enhanced bacoside production in shoot cultures
of Bacopa monnieri under the influence of abiotic elicitors. Natural
Product Research 29(8): 745-749.
Singh,
A. & Dwivedi, P. 2018. Methyl jasmonate and salicylic acid as potent
elicitors for secondary metabolite production in medicinal plants: A review. Journal
of Pharmacognosy and Phytochemistry 7(1): 750-757.
Sohn, S.I.,
Pandian, S., Rakkammal, K., Largia, M.J.V., Thamilarasan, S.K., Balaji, S.,
Zoclanclounon, Y.A.B., Shilpha, J. & Ramesh, M. 2022. Jasmonates in plant
growth and development and elicitation of secondary metabolites: An updated
overview. Frontiers in Plant Science 13: 942789.
Song,
S., Qi, T., Wasternack, C. & Xie, D. 2014. Jasmonate signaling and
crosstalk with gibberellin and ethylene. Current Opinion in Plant Biology 21: 112-119.
Świątek,
A., Azmi, A., Stals, H., Inzé, D. & Van Onckelen, H. 2004. Jasmonic acid
prevents the accumulation of cyclin B1;1 and CDK-B in synchronized tobacco BY-2
cells. FEBS Letter 572: 118-122.
Peteliuk,
V., Rybchuk, L., Bayliak, M., Storey, K.B. & Lushchak, O. 2021. Natural sweetener Stevia rebaudiana: Functionalities, health benefits, and potential risks. EXCLI Journal 20: 1412-1430.
Yoneda,
Y., Nakashima, H., Miyasaka, J., Ohdoi, K. & Shimizu, H. 2017. Impact of
blue, red, and far-red light treatments on gene expression and steviol
glycoside accumulation in Stevia rebaudiana. Phytochemistry 137: 57-65.
Zare-Hassani,
E., Motafakkerazad, R., Razeghi, J. & Kosari-Nasab, M. 2019. The
effects of methyl jasmonate and salicylic acid on the production of secondary
metabolites in organ culture of Ziziphora persica. Plant
Cell Tissue Organ Culture 138: 437-444.
*Pengarang untuk surat-menyurat; email: rizkita@itb.ac.id